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Self-organized interface growth with the negative nonlinearity in a random medium
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We introduce two self-organized growth models that describe the motion of the driven interfaces in random
media including the Kardar-Parisi-Zhang~KPZ! nonlinearity. One model follows the quenched KPZ equation
with a positive nonlinear term, while the other model follows the quenched KPZ equation with a negative
nonlinear term. By obtaining the critical exponents for two models, we confirm that the sign of the KPZ
nonlinear term does not affect the universality class.
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Dynamics of an interface roughening in a random m
dium has attracted much attention during the last decade
is relevant for various phenomena@1–5#. The driven motion
of an interface in a random medium takes place by com
tition between smoothening due to the surface tension
roughening due to interaction with the random pinni
forces of the medium. Further, there is an interplay betw
the pinning force and the external driving force acting on
interface. The interface is pinned when the driving forceF is
smaller than the pinning strength induced by the quenc
disorder. The interface moves with a constant velocity wh
F is greater than the pinning strength. Hence, there exis
threshold of the driving forceFc above which the interface
moves with a constant velocity; the velocity is zero forF
,Fc , and it increases forF.Fc . This phenomenon is
called the pinning-depinning transition.

In the presence of an external driving forceF, the well-
known nonlinear equation describing the dynamics o
driven interface in a random medium is the quench
Kardar-Parisi-Zhang~QKPZ! @6# equation,

]h~x,t !

]t
5n¹2h1

l

2
~“h!21F1h~x,h!, ~1!

where the quenched noise^h(x,h)& satisfies^h(x,h)&50
and ^h(x,h)h(x8,h8)&52Ddd(x2x8)d(h2h8) with noise
strengthD. The quenched noise term describes a rand
pinning force by the quenched disorder. Near the depinn
threshold, the dynamics of a driven interface in a rand
medium can be described in terms of the roughness expo
a and the growth exponentb corresponding to the spatia
and temporal scalings of the surface roughness, respecti
@6#. In this picture, the interface widthW(L,t), defined as
the root mean square of the heighth(x,t),

W~L,t !5K 1

Ld (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~2!

scales asLa for a long time andtb at the early stages of th
process. Hereh̄, L, and d denote the mean height, syste
size, and substrate dimension, respectively.

Many studies have been carried out to describe and
derstand the motion of the driven interface following t
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QKPZ equation. Tang and Leschhorn@7# suggested that the
directed percolation depinning~DPD! model @8# follows the
positive QKPZ~PQKPZ! equation in whichl.0. They ar-
gued that the roughness exponenta in the PQKPZ univer-
sality class is given by the ratio of two correlation leng
exponents,n' and n i , in the perpendicular and parallel d
rections of directed percolating clusters, which isa5n' /n i
'0.63 in one dimension. Leschhorn@9# also showed that the
roughness exponent in the PQKPZ universality class isa
'0.63 in one dimension via the numerical integration of t
PQKPZ equation and the automaton model, which is the
crete version of the QKPZ equation.

Also, Sneppen@10# introduced two simple self-organize
growth models in which the growing interface is not co
trolled by an external driving forceF but rather by the self-
organized growth. Such self-organized growth models
useful to understand the dynamics of driven interfaces
random media@11#. Two models show two different scalin
behaviors when the growth rule is a bit changed. In o
model, the scaling behavior of the model can be explained
the PQKPZ equation, which is in the same universality cl
as the DPD model giving the roughness exponenta.0.63.
While the other model withl,0 gave the roughness expo
nenta51 showing the interface morphology of a mounta
with constant inclination. Jeonget al. @12# also showed the
same interface morphology as the Sneppen model witl
,0 resulting ina51 through the numerical integration fo
the negative QKPZ~NQKPZ! equation in whichl,0.

Thus the NQKPZ equation exhibits scaling behaviors d
ferent from those of the PQKPZ equation. However su
interface morphology with constant inclination is simply d
to the localized pinned region around the site at which
height is absolute minimum. This localization remai
throughout the interface growth since the pinning strength
the site is relatively large. Thereforea.1 resulting from the
localized pinning site could not properly describe t
NQKPZ equation. Moreover, Stepanow@13# carried out a
quantitative analysis of the QKPZ equation by the functio
renormalization group scheme, in whichl is included as a
square in the coupling constant associated with thel term.
This study indicates the sign ofl does not affect the scaling
behavior of the QKPZ equation so that the QKPZ equation
in the same universality class regardless of the sign ofl. In
this aspect, a controversy still remains and the study of
©2002 The American Physical Society02-1



s
the gray

e upper two

BRIEF REPORTS PHYSICAL REVIEW E66, 047102 ~2002!
FIG. 1. The schematic representations of the stochastic rules of modelsA ~a,c! andB ~b,d!. All panels represent the various situation
after a particle is deposited. Here the arrows denote the selected site with the minimum random number before deposition and
squares denote the newly added particles on the interface. The large-size numbers denote the newly updated random numbers. Th
panels correspond to the case in which the deposited particle does not hop to the other site for modelA ~a! and modelB ~b! lower two panels
represent the case in which the hoppings of the deposited particle occur for modelA ~c! and modelB ~d!.
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NQKPZ equation is inadequate when comparing that for
PQKPZ equation. Therefore it would be interesting to stu
the NQKPZ equation through the self-organized grow
model.

In this paper, we introduce two kinds of self-organiz
growth models that describe the QKPZ equation with
positive or negative sign of KPZ nonlinear term, respe
tively. In the two models, we use the same dynamic rule
apply different ways of updating random numbers on
interface each time. The different updating rule of rand
numbers makes the sign of the KPZ nonlinear term in t
models opposite. That is, in one model, the sign of K
nonlinear term is positive, while the sign of KPZ nonline
term is negative in the other model. By measuring the in
face velocity for various tilts of the substrate, we confirm t
sign of the KPZ nonlinear term. We also obtain the critic
exponents for the two models and find that the values
exponents are the same, regardless of the sign of the
nonlinear term.

The growth rule of our model is defined as follows: W
preassign random numbers between 0 and 1 representin
purities in random media, to all perimeter sites of the initia
flat substrate. A particle is deposited on the sitex with the
lowest minimum random number on the interface. If the
stricted solid on solid~RSOS! condition on the neighboring
heightsuDhu<1 is obeyed, the deposited particle stays at s
x, which increases the heighth(x)→h(x)11 and the ran-
dom number at sitex is updated. If the RSOS condition is no
obeyed at the sitex, the deposited particle is allowed to ho
to the nearest neighbor site with the smaller height unt
site satisfying the RSOS condition is found. When t
heights of all nearest neighbor sites are the same, the pa
hops to a randomly chosen one of its nearest neighbor s
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Then we update the random number only at the newly oc
pied site irrespective of whether the deposited particle h
to the other site or not. We call this model the modelA.
Figures 1~a! and 1~c! show the schematic representations
the growth rule of modelA.

Our simulations were carried out starting from a flat in
tial surface with periodic boundary conditions in one dime
sion. Numerical data were averaged over more than 100 c
figurations. Figure 2 shows the plot of the surface wid
W2(L) versus system sizeL with L5128, 256, 512, 1024
2048, and 4096. The solid guide line represents thaa

FIG. 2. The plots of widthW2(L) versus the system sizeL for
modelA. The solid guide line representsa.0.63. In the inset, we
obtain the growth exponentb.0.89 andbs.0.65.
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.0.63. This value agrees with that obtained from DPD m
els in the PQKPZ universality class. We measured t
growth exponents as shown in the inset of Fig. 2. O
growth exponentb is measured on the flat initial surface~the
bottom one! and the other growth exponentbs is measured
on the initially saturated surface~the top one!. The guide
lines representb.0.88 and bs.0.65, respectively. The
value ofbs is generally smaller than that ofb and it is well
known thatbs is a correct growth exponent to classify th
universality class in growth models for driven interfaces
random media@14#. The obtained value ofbs 0.65 is close to
0.63 in the PQKPZ universality class. Thus modelA follows
the PQKPZ equation.

To confirm the sign of the KPZ nonlinear term in mod
A, we consider the average velocityv as a function of slope
m, which is the slope of the tilted substrate@15#. By measur-
ing the interface velocity, we can obtain the value ofl
through the relation

v~m!5v~0!1
l

2
m2. ~3!

Here l is obtained asl52(]2v/]m2). Amaral et al. @16#
showed two distinct universality classes for the dynamics
the driven interfaces in random media by analyzing the
pendence of the interface velocityv(m) on the slopem. In
the case where the interface velocityv(m) depends on the
slopem near the depinning threshold, the KPZ nonlinear
exists. While if the slope dependence of the interface ve
ity is absent or vanishes at the depinning threshold, the K
nonlinearity does not exist.

To monitor the interface velocity, at first, we consider t
time incrementDt. In the growth rule of modelA, we always
drop a particle at each time step, that is,Dt51/L, so that a
unit time interval, or a Monte Carlo time corresponds to t
one deposited event per site, on average. In the time s
the average interface velocity always becomes 1 regard
of the slope of the substrate, so we cannot measure the
locity versus the tilt of the substrate. To solve this proble
we consider another time incrementDtA . If the same site is
chosen continuously in some time intervalA/L, we regard it
as an avalanche of which amount isA and we takeDtA
5Dt/A, that is, an event of avalanche per site become
unit time interval. Such another time scale does not affect
critical exponents describing the dynamics of the model
causetA depends ont linearly as shown in Fig. 3. Howeve
we can measure the increasing interface velocity when
substrate is tilted. If the deposited particle diffuses to
nearest neighbor site, the random number at the selected
is not changed and still has a very low value. Therefore
avalanche may occur until the random number at the sele
site is updated. Thus the more the substrate is tilted, the m
diffusion processes occur. Eventually the amount of a
lanche becomes larger and the interface velocity increase
the substrate is titled. Figure 4~a! shows the plot of the inter
face velocity versus the slopem of the tilted substrate. We
obtain l'7.94, which confirms that the KPZ nonlineari
exists and its sign is positive. Here we used a helical bou
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ary condition h(0,t)5h(L,t)2Lm and h(L11,t)5h(1,t)
1Lm with the initial vicinal surface of the slopem.

We then consider another growth model that can desc
the NQKPZ equation~we call it modelB). To do this, we
modify the rule of modelA slightly, where the dynamic rule
is the same but the way of updating the random numbe
changed. When a particle is added at the selected site~i.e., no
hopping occurs!, the random number at the selected site
updated as in the modelA @Fig. 1~b!#. But when the hoppings
to the nearest neighbor site occur, we update all rand
numbers at the sites between the selected and a newly o
pied site@Fig. 1~d!#. Thus the updating rules of the rando
number for the two models are different if the hoppings
the deposited particle occur. In modelA, the random number
at the added site only is updated, while all the random nu
bers of sites passed by the hopping process are update
model B. This updating rule of random numbers increas
the number of newly updating sites between the selected
and the added site. The probability of choosing the selec

FIG. 3. The plot of the timetA vesust. The guide line is linear,
which indicates the another time scaletA does not change the value
of exponent for the considered models.

FIG. 4. The plots of the interface velocity versus the tilt of t
substrate for modelA ~a! and modelB ~b!.
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site again at the next time step decreases so that the av
amount of avalanches decreases. This makes the inte
velocity decrease when the substrate is tilted.

Figure 4~b! shows the dependence of the interface vel
ity on the tilt of the substrate withl'21.16. This indicates
that modelB contains the KPZ nonlinear term with a neg
tive sign. We thus expect modelB follows the NQKPZ equa-
tion. To survey the universality class to which modelB be-

FIG. 5. The plots of widthW2(L) versus the system sizeL for
modelB. The solid guide line representsa.0.65. In the inset, we
obtain the growth exponentb.1 andbs.0.65.
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longs, we obtain the roughness exponent and the gro
exponent. Figure 5 shows thata.0.65, b.1, and bs
.0.65. These values are in a good agreement with thos
the DPD models, which indicate that the universality class
the NQKPZ equation is same as that of the PQKPZ equat
Therefore the sign of the KPZ nonlinear term does not aff
the universality class for the dynamics of the driven interfa
in a random medium as the analytic result in Ref.@13#.

In summary, we have introduced two self-organiz
growth models that describe the PQKPZ and the NQK
equation in one dimension. The same dynamic growth r
has been used in the two models, whereas the updating
of the random number are different in two models. T
modification of the updating algorithm makes the sign of t
nonlinear term be opposite in two models. Also the updat
rules of the random number prevent the specific sites fr
being pinned throughout growth process. In modelA, the
positive KPZ nonlinear term exists and modelA follows the
PQKPZ equation witha.0.63 andbs.0.65. In modelB,
the sign of nonlinear term is negative and modelB follows
the NQKPZ equation witha.0.65 andbs.0.65. Here the
obtained values of the roughness and growth exponent
modelsA andB are very close each other, which indicate th
the NQKPZ and PQKPZ equations belong to the same u
versality class regardless of the sign of the KPZ nonlin
term.
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